Skip to main content

Posts

Showing posts from July, 2009

4) Dark Matter: Another Catalyst

To this point we have not discussed anything new; only clarified the importance of thinking of gravity in the correct context. Rather than visualizing gravity as the attraction of two bodies, we are now thinking of bodies such as stars and planets traveling along the inside of Gravity Wells - a well-known concept. This means, we have only restated the problem in less abstract, less obscure terms. It turns out that this analogy holds up remarkably well; like rolling a marble along the inner surface of a physical bowl, it will travel around the bowl until it eventually loses momentum and settles to the bottom, or if it is tossed too hard, roll over the edge of the bowl and escape it altogether. If the marble could somehow be rolled with just the right force (momentarily overlooking friction), it could settle into a point of equilibrium, having just the right amount of angular velocity to maintain a constant distance from the bottom of the bowl and its outer edge. This perfect velocit...

3) Dark Matter: Gravity Wells

These depressions in space (gravity wells) express the classical understanding of gravitation (Relativistic, not Newtonian), which suggests that gravity is not a measure of the force of attraction between two bodies, it is instead a measure of the force with which two bodies fall into the larger gravity well produced by the overlapping of their two individual gravity wells. This means that we could essentially describe the riddle of Dark Matter in another way, by simply saying that we cannot explain how the gravity depressions in which galaxies exist can be deep enough to prevent the spinning matter within them from over-spilling their boundaries. So, before tackling the question of how these depressions can exist at all, we should first ask an even more basic question. If we concede that such depressions  do  exist, then perhaps we can first attempt to understand whether the matter within galaxies behaves according to our understanding of gravitation. In other words, start ...

2) Dark Matter: From the Beginning

The paradox of Dark Matter leads unavoidably to a few questions. The first and most obvious has to do with galaxy structure. How can galaxies behave as though they contain 70% more mass than they appear to have? What keeps them from simply flying apart? But these questions quickly lead to the even more intriguing question of how they ever formed at all. Understanding the riddle of Dark Matter requires rewinding the clock all the way back to the Big Bang. Like so many other questions in physics, it can seem odd that two seemingly disconnected topics can end up having such direct bearing on one another. But in the end, unexpected connections like this often end up being a good thing; they are signals, hints that we may have tapped into a fundamental aspect of the Universe that once understood, could help resolve other mysteries as well. First, what of galaxy structure and rotation? Here the problem is that we cannot detect enough matter to account for the gravity that we know  mu...

1) Dark Matter

Dark Matter is a special form of matter that is hypothesized to explain certain anomalies in the formation and behavior of galaxies, which has been the subject of a great deal of attention and debate in the areas of physics and astronomy over recent years. Over the next few weeks I plan to publish a series of posts on the subject, and along the way, propose a possible alternative to current, and prevailing thinking on the matter. The concept of Dark Matter was first put forward as a possible explanation for some of the odd characteristics of galaxies that cannot be fully explained based on current notions of gravitation. In a nutshell, it is presumed that gravity is the only binding agent that holds galaxies together. Based on this simple and reasonable assumption, it seems obvious that there must then be enough matter in any given galaxy to account for the fact that it is able to hold its shape. The problem is that given the rotation of most galaxies (maybe all), there does not se...