Skip to main content

Posts

Showing posts from 2010

15) Dark Matter: Spacetime Cavitation

All prior posts in this Dark Matter series are summarized as follows: Spacetime Cavitation Summary Galaxies begin as regions of  Spacetime Cavitation  resulting from Universal Expansion, often taking on whirlpool-like shapes, which reflect the underlying curvature and motions of Spacetime itself, upon and within which they are formed (see image below). Matter has a counterpart within the realm of non-material Spacetime. When subjected to extreme cavitation, an applicable unit of Spacetime is converted into its material counterpart (mass and/or energy). Said another way:  Matter is a byproduct of Spacetime Cavitation . This counterpart is almost always hydrogen and/or radiation. With respect to galaxy formation, hydrogen produced as a byproduct of Spacetime Cavitation, which generally lacks sufficient mass to coalesce into stars by reason of its own gravitation when sparsely distributed, instead reacts to the Gravity Well within which it was produced, spiraling and c...

14) Dark Matter: Galaxy Formation and the Origin of Matter

Now for the next big question, which has to do with the origin of matter. All along, the assumption has been that all matter present within the Universe originated from the Singularity that preceded the Big Bang. As I have pointed out, I believe this theory is wrong (Big Bang theory, that is) for many reasons. I will touch upon a couple of them now, and a few more in a following post. If all the matter within the Universe is nothing more than the debris field of the Big Bang, then what caused the galaxies to form in the first place? I discussed what I believe to be part of the answer to this question in the previous post, finally concluding that Galaxies form at points where Universal Expansion causes spacetime to break down, cavitating into regions of non-flat spacetime. I call this process,  Spacetime Cavitation . I submit that most galaxies form as regions of Spacetime Cavitation like this, and quite possibly, all of them. To fully grasp this concept requires that we no long...

13) Dark Matter: Sources of Natural Gravitation

There are two gravitational conditions. First is the common notion of Relativistic gravitation, which tells us that gravity is a result of the curvature of spacetime caused by the presence of mass. This form of gravity is most familiar to us. When we look up at the night sky, we are peering at the stars from deep within the earth’s Gravity Well, which also happens to be fairly deep within the Sun’s Gravity Well. Kepler’s Laws of planetary motion, Einstein’s General Relativity, and even Newtonian Gravitation all provide good frameworks for understanding what we see in the skies, especially when it comes to the behavior of nearby celestial objects like the planets in our Solar System. However, applying what we have learned about gravitation to our observations of other galaxies, especially spiral galaxies, we find that they  do not  seem to behave as we expect. As we have discussed at length, there simply isn’t enough visible matter within them to account for their abil...

12) Dark Matter: Mass/Energy Equivalence

We should remember that in every scenario where a substance or object succumbs to stress in a way that changes its nature (as discussed in the previous post), the principles of mass/energy equivalence remain in play, as do those of mass/energy conservation. For instance, the sun’s nuclear furnace works by compressing hydrogen atoms into helium (although, not quite so directly), resulting in a loss of mass in the form of energy. But, using the handy equation,  E = mc 2 , we can account for the mass of the original hydrogen atoms even after this fusion takes place. It is important to understand something else about mass/energy equivalence too, which is that it does not imply that mass and energy can be converted between states in some trivial way; it says that the  mass of a body is a measure of its energy content . One way of thinking about this is to consider unit of measure conversions: one gallon of liquid is equal to 3.785 liters. Although this analogy is far from perfect...

11) Dark Matter: Galaxy Formation and Spacetime Stress

In the previous post, I discussed some of the oddities revealed in the Hubble Ultra Deep Field Image. Specifically, the strange occurrence of what appear to be galaxies of vastly different ages occupying the same regions of space, within what is believed to be a snapshot of the early Universe itself (or, at least part of it). At the end of that post, I concluded that the most straightforward solution to this mystery lies in the likelihood that these galaxies formed in place (at their relative positions) as a result of something other than the Big Bang. The next question is, if the matter from which these galaxies were formed did not originate from the Big Bang, then where did it come from? And, what triggered their formation? Let us think about the rigidity of space and Universal expansion again. As we discussed in a prior post, spacetime is incredibly rigid, but it expands nonetheless. And, despite this unrelenting and ever-accelerating expansion, the matter within it condenses into...

10) Dark Matter: Odd Galactic Neighborhoods

If there isn't enough observable matter within a given galaxy to account for the fact that it does not simply fall apart, then what explanation (other than Dark Matter) is there for its formation? Is it possible that the galaxies formed in place, at their relative positions within the Universe, rather than being part of the debris field of some enormous explosion (the Big Bang)? It seems worth considering. Of course, if we do consider it, we must then ask where all the matter  did  come from. Indeed we do. For some, this question is enough in itself to dismiss any argument against the Big Bang altogether. Yet, I must hold out that to the open-minded, considering this question is no less sensible than believing that all the matter in the Universe originated from a singularity. Speculation like this leads to many valid questions, not the least of which being, "What about all the other supporting evidence for the Big Bang?" A fair question to be sure, but that's wh...

9) Dark Matter: Distribution of Matter

In actuality, speculation about the origins of the Universe is very often speculation about the origins of matter. The Big Bang tracks everything back to a  singularity  – a single theoretical point where everything that  is  today, at one time existed in a condensed, ethereal state, which eventually exploded and evolved into the Universe as it is now. Given our observations and reflections on the Universe, this theory seems almost, but not quite reasonable. First, the Big Bang is essentially targeted at two fundamental and hereto unexplained features of the Universe; 1) that it is expanding and 2) that there seems to be no other reasonable explanation of its origins. Beyond these two conditions, which the Big Bang seems particularly well suited to explain, are other observations that it doesn’t address quite so elegantly. One of the biggest problems with the Big Bang is the distribution of matter. Deep space astronomy has revealed that there is a remarkably even...