Skip to main content

12) Dark Matter: Mass/Energy Equivalence

We should remember that in every scenario where a substance or object succumbs to stress in a way that changes its nature (as discussed in the previous post), the principles of mass/energy equivalence remain in play, as do those of mass/energy conservation. For instance, the sun’s nuclear furnace works by compressing hydrogen atoms into helium (although, not quite so directly), resulting in a loss of mass in the form of energy. But, using the handy equation, E = mc2, we can account for the mass of the original hydrogen atoms even after this fusion takes place.

It is important to understand something else about mass/energy equivalence too, which is that it does not imply that mass and energy can be converted between states in some trivial way; it says that the mass of a body is a measure of its energy content. One way of thinking about this is to consider unit of measure conversions: one gallon of liquid is equal to 3.785 liters. Although this analogy is far from perfect (it doesn’t entirely hold up since mass and energy are not the same things), it does provide a decent insight into what mass/energy equivalence communicates. In a sense, they are two measures of the same quantity. Furthermore, within a closed system, mass and energy cannot be created or destroyed, only transformed.

Oddly, the principles of conservation of mass and energy are part of the supporting evidence for a Big Bang – they imply that everything that is now, must have always existed. The only thing we can assume then, is that all matter in the Universe must have existed within the singularity that preceded the Big Bang. Part of my intent here, of course, is to show that this is probably not true (and, given the current subject, I must point out that my use of the word probably is non-scientific).

So, where does this leave us? Throughout the many posts of this series on Dark Matter, we’ve talked about Gravity Wells, Gravity Bowls, the expanding Universe (Dark Energy), the rigidity of spacetime, E = mc2, and now, stresses and the conservation of mass/energy. What does it all add up to? To find out, we must add a final piece to the puzzle.

Popular posts from this blog

4) Dark Matter: Another Catalyst

To this point we have not discussed anything new; only clarified the importance of thinking of gravity in the correct context. Rather than visualizing gravity as the attraction of two bodies, we are now thinking of bodies such as stars and planets traveling along the inside of Gravity Wells - a well-known concept. This means, we have only restated the problem in less abstract, less obscure terms. It turns out that this analogy holds up remarkably well; like rolling a marble along the inner surface of a physical bowl, it will travel around the bowl until it eventually loses momentum and settles to the bottom, or if it is tossed too hard, roll over the edge of the bowl and escape it altogether. If the marble could somehow be rolled with just the right force (momentarily overlooking friction), it could settle into a point of equilibrium, having just the right amount of angular velocity to maintain a constant distance from the bottom of the bowl and its outer edge. This perfect velocit...

3) Dark Matter: Gravity Wells

These depressions in space (gravity wells) express the classical understanding of gravitation (Relativistic, not Newtonian), which suggests that gravity is not a measure of the force of attraction between two bodies, it is instead a measure of the force with which two bodies fall into the larger gravity well produced by the overlapping of their two individual gravity wells. This means that we could essentially describe the riddle of Dark Matter in another way, by simply saying that we cannot explain how the gravity depressions in which galaxies exist can be deep enough to prevent the spinning matter within them from over-spilling their boundaries. So, before tackling the question of how these depressions can exist at all, we should first ask an even more basic question. If we concede that such depressions  do  exist, then perhaps we can first attempt to understand whether the matter within galaxies behaves according to our understanding of gravitation. In other words, start ...

14) Dark Matter: Galaxy Formation and the Origin of Matter

Now for the next big question, which has to do with the origin of matter. All along, the assumption has been that all matter present within the Universe originated from the Singularity that preceded the Big Bang. As I have pointed out, I believe this theory is wrong (Big Bang theory, that is) for many reasons. I will touch upon a couple of them now, and a few more in a following post. If all the matter within the Universe is nothing more than the debris field of the Big Bang, then what caused the galaxies to form in the first place? I discussed what I believe to be part of the answer to this question in the previous post, finally concluding that Galaxies form at points where Universal Expansion causes spacetime to break down, cavitating into regions of non-flat spacetime. I call this process,  Spacetime Cavitation . I submit that most galaxies form as regions of Spacetime Cavitation like this, and quite possibly, all of them. To fully grasp this concept requires that we no long...