Skip to main content

Prelude to Ascension

I'm very happy with the way Prelude to Ascension is being received. I continue to hear positive feedback from the Amazon sales site and various other channels. Many thanks!

Thought I'd mention that we're working towards releasing an audio version of the book on audible.com.

I'll post an update when it's available.

-Brent

Popular posts from this blog

The Galactic Now

The Kindle version of book two in the Assemblies of the Living series is now available on Amazon . The title is The Galactic Now . I hope you enjoy it! -Brent

15) Dark Matter: Spacetime Cavitation

All prior posts in this Dark Matter series are summarized as follows: Spacetime Cavitation Summary Galaxies begin as regions of  Spacetime Cavitation  resulting from Universal Expansion, often taking on whirlpool-like shapes, which reflect the underlying curvature and motions of Spacetime itself, upon and within which they are formed (see image below). Matter has a counterpart within the realm of non-material Spacetime. When subjected to extreme cavitation, an applicable unit of Spacetime is converted into its material counterpart (mass and/or energy). Said another way:  Matter is a byproduct of Spacetime Cavitation . This counterpart is almost always hydrogen and/or radiation. With respect to galaxy formation, hydrogen produced as a byproduct of Spacetime Cavitation, which generally lacks sufficient mass to coalesce into stars by reason of its own gravitation when sparsely distributed, instead reacts to the Gravity Well within which it was produced, spiraling and c...

2) Dark Matter: From the Beginning

The paradox of Dark Matter leads unavoidably to a few questions. The first and most obvious has to do with galaxy structure. How can galaxies behave as though they contain 70% more mass than they appear to have? What keeps them from simply flying apart? But these questions quickly lead to the even more intriguing question of how they ever formed at all. Understanding the riddle of Dark Matter requires rewinding the clock all the way back to the Big Bang. Like so many other questions in physics, it can seem odd that two seemingly disconnected topics can end up having such direct bearing on one another. But in the end, unexpected connections like this often end up being a good thing; they are signals, hints that we may have tapped into a fundamental aspect of the Universe that once understood, could help resolve other mysteries as well. First, what of galaxy structure and rotation? Here the problem is that we cannot detect enough matter to account for the gravity that we know  mu...